
Spokane Regional Clean Air Agency Air Quality Report - January 2024

The Spokane-area air monitoring network reported MODERATE air quality on only one day in January as determined by the Air Quality Index (AQI). Air quality was GOOD on the remaining 30 days (**Figure 1 and Table 1**). The maximum daily AQI was 52, based on a 24-hour average $PM_{2.5}$ concentration of 12.5 µg/m³ recorded at the new Spokane-Sprague & Haven monitoring station on the 26th (**Figure 2 and Table 2**). The maximum AQI for PM_{10} was 30 (24-hour $PM_{2.5}$ mass concentration = 32 µg/m³), recorded on the 31st at Spokane-Augusta & Fiske.

See Appendix 1 of this report for a description of the AQI, Appendix 2 for information about federal air quality standards, and Appendix 3 for a summary of daily PM_{2.5}, and PM₁₀ concentrations and AQIs across the Spokane-area ambient air monitoring network. Current and historical ambient air quality data can also be obtained from the Washington State Department of Ecology's air monitoring data website, <u>https://enviwa.ecology.wa.gov/home/map</u>.

Table 1 summarizes the daily AQIs by category for the month and year-to-date and Tables 2 and 3 contain the maximum AQI values for each pollutant for the month and for the year, respectively.

Figure 2: Daily 24-hour average PM_{2.5}, all Spokane County monitoring stations, January 2024. Turnbull and Greenbluff data (dashed) are collected using "low-cost" sensors. Although slightly less accurate than the Agency's regulatory grade monitors, these sensors enable the expansion of the monitoring network into areas that would otherwise go unmonitored.

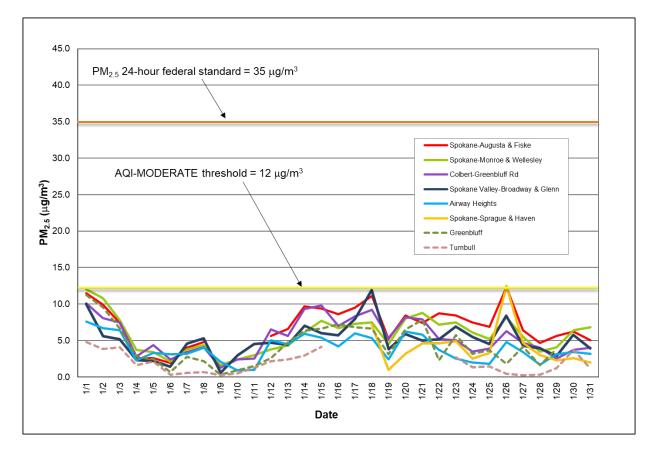


Table 1: AQI summary, January 2024

Category	Number of days in January
Good (0-50)	30
Moderate (51-100)	1
Unhealthy for Sensitive Groups (101-150)	0
Unhealthy (151-200)	0
Very Unhealthy (201-300)	0
Hazardous (>300)	0

Table 2: Maximum AQI values and pollutant concentrations for this reporting period.

Pollutant	AQI		Location	Date
PM ₁₀	$30 \text{ (conc.} = 32 \mu\text{g/m}^3\text{)}$	Good	Spokane – Augusta & Fiske	1/31
PM _{2.5}	52 (conc. = 12.5 μg/m ³)	Moderate	Spokane – Sprague & Haven	1/26

Appendix 1 – Air Quality Index

The Air Quality Index (AQI) is EPA's color-coded tool for communicating daily air quality to the public and can be calculated for any of the criteria pollutants except lead, provided monitoring data are available. An index value above 100 indicates that the concentration of a criteria pollutant exceeded the limit established in the NAAQS. Categories of the AQI are "Good" (green, 0-50), "Moderate" (yellow, 51-100), "Unhealthy for Sensitive Groups" (USG; orange, 101-150), "Unhealthy" (red, 151-200), "Very Unhealthy" (purple, 201-300) and "Hazardous" (maroon, 301-500; Table A-1).

Air Quality Index	Color Code	Index		Break	Health Effects			
Levels of Health Concern		Numerical Value	O ₃ (ppm) 8-hour	PM _{2.5} (μg/m ³) 24-hour	PM ₁₀ (μg/m ³) 24-hour	CO (ppm) 8-hour		
Good	Green	0-50	0.000-0.054	0.0-12.0	0-54	0.0-4.4	Air quality is considered satisfactory and air pollution poses little or no risk.	
Moderate	Yellow	51-100	0.055-0.070	12.1-35.4	55-154	4.5-9.4	Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.	
Unhealthy for Sensitive Groups	Orange	101-150	0.071-0.085	35.5-55.4	155-254	9.5-12.4	People especially sensitive to air pollution may experience health effects. The general public is not likely to be affected. An AQI in this category or above indicates that air pollution exceeds levels acceptable under federal air quality standards.	
Unhealthy	Red	151-200	0.086-0.105	55.5-150.4	255-354	12.5-15.4	Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.	
Very Unhealthy	Purple	201-300	0.106-0.200	150.5-250.4	355-424	15.5-30.4	Health alert: everyone may experience more serious health effects.	
Hazardous	Maroon	>300	0.201 to the Significant Harm Level* (0.600 ppm, 2 hour average)	250.5+	425+	30.5+	Health warnings of emergency conditions. The entire population is more likely to be affected.	

Table A-1: Air pollutant breakpoints for the Air Quality Index.

*The significant harm level (SHL) is set at a level that represents imminent and substantial endangerment to public health.

Appendix 2 – National Ambient Air Quality Standards

The Clean Air Act requires EPA to set National Ambient Air Quality Standards (NAAQS) for six common air pollutants, carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO₂), particulate matter (PM₁₀ and PM_{2.5}), ground-level ozone (O₃) and sulfur dioxide (SO₂; Table A-2). These are known as "criteria" pollutants because the US EPA established regulatory limits to concentrations in ambient air using human health or environmentally based criteria. Carbon monoxide, particulate matter and ozone are monitored in Spokane County by the Spokane Regional Clean Air Agency (SRCAA) and the Washington State Department of Ecology (Ecology).

Pollutan [links to historical tab reviews	les of NAAQS	Primary/ Secondary	Averaging Time	Level	Form						
Carbon Monoxide (CO)		primary	8 hours	9 ppm	Not to be exceeded more than once per						
		printery	1 hour	35 ppm	year						
<u>Lead (Pb)</u>		primary and secondary	Rolling 3 month period	Not to be exceeded							
Nitrogen Dioxide (NO ₂)		primary	1 hour	100 ppb	98th percentile of 1-hour daily maximum concentrations, averaged over 3 years						
		primary and secondary	1 year	53 ppb (2)	Annual Mean						
Ozone (O ₃)		primary and secondary	8 hours	0.070 ppm	Annual fourth-highest daily maximum 8- hour concentration, averaged over 3 years						
		primary	1 year	12.0 µg/m ³	annual mean, averaged over 3 years						
	PM _{2.5}	secondary	1 year	15.0 µg/m ³	annual mean, averaged over 3 years						
Particle Pollution (PM)		primary and secondary	24 hours	35 µg/m ³	98th percentile, averaged over 3 years						
	PM ₁₀	primary and secondary	24 hours	150 µg/m ³	Not to be exceeded more than once per year on average over 3 years						
Sulfur Dioxide (SO ₂)		primary	1 hour	75 ppb (4)	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years						
		secondary	3 hours	0.5 ppm	Not to be exceeded more than once per year						

Table A-2:	National	Ambient Ai	r Quality	Standards
------------	----------	-------------------	-----------	-----------

(1) In areas designated nonattainment for the Pb standards prior to the promulgation of the current (2008) standards, and for which implementation plans to attain or maintain the current (2008) standards have not been submitted and approved, the previous standards (1.5 μ g/m³ as a calendar quarter average) also remain in effect.

(2) The level of the annual NO₂ standard is 0.053 ppm. It is shown here in terms of ppb for the purposes of clearer comparison to the 1-hour standard level.

(3) Final rule signed October 1, 2015, and effective December 28, 2015. The previous (2008) O_3 standards additionally remain in effect in some areas. Revocation of the previous (2008) O_3 standards and transitioning to the current (2015) standards will be addressed in the implementation rule for the current standards.

(4) The previous SO₂ standards (0.14 ppm 24-hour and 0.03 ppm annual) will additionally remain in effect in certain areas: (1) any area for which it is not yet 1 year since the effective date of designation under the current (2010) standards, and (2) any area for which implementation plans providing for attainment of the current (2010) standard have not been submitted and approved and which is designated nonattainment under the previous SO₂ standards or is not meeting the requirements of a SIP call under the previous SO₂ standards (40 CFR 50.4(3)), A SIP call is an EPA action requiring a state to resubmit all or part of its State Implementation Plan to demonstrate attainment of the require NAAQS.

Appendix 3

<u>Table A-3</u>: January summary air quality data for air monitoring stations in Spokane County. Particulate matter mass concentration is reported as 24-hour averages in micrograms per cubic meter of air (μ g/m³). See Appendix 2 for an explanation of the Air Quality Index. Data reporting for the new Spokane, Sprague & Haven monitoring station began on the 18th. The router and other communications equipment were replaced at Greenbluff on the 30th and 31st. A tripped circuit breaker resulted in loss of PM₁₀ data from Spokane Valley, Broadway & Glenn station on the 19th through the 22nd. A tripped GFCI at the Turnbull NWR station caused a loss of PM₁₀ data on the 24th through the 26th.

	Pollutant Concentration										Aiı	: Qu	ality	/ Ind	ex (AQ)		. <u> </u>					
			Р	M _{2.5}	(µg/m ³	⁵)			PM	10 (µg	$/m^3$)	PM _{2.5} PM ₁₀												
	24-Hour Avg 24						Hour																	
Date	PM2.5 - Airway Heights, 12th & Lawson	PM2.5 - Colbert, E Greenbluff Rd	PM2.5 - Spokane, Augusta & Fiske	PM2.5 - Spokane, Sprague & Haven	PM2.5 - Spokane, Monroe & Wellesley	PM2.5 - Spokane Valley, Broadway & Glenn	PM2.5 - Greenbluff (temporary sensor)	PM2.5 - Turnbull NWR (temporary sensor)	PM10 - Spokane, Augusta & Fiske	PM10 - Spokane Valley, Broadway & Glenn	PM10 - Turnbull NWR	Date	PM2.5 - Airway Heights, 12th & Lawson	PM2.5 - Colbert, E Greenbluff Rd	PM2.5 - Spokane - Augusta & Fiske	PM2.5 - Spokane, Sprague & Haven	PM2.5 - Spokane, Monroe & Wellesley	PM2.5 - Spokane Valley, Broadway & Glenn	PM2.5 - Greenbluff (temporary sensor)	PM2.5 - Turnbull NWR (temporary sensor)	PM10 - Spokane, Augusta & Fiske	PM10 - Spokane Valley, Broadway & Glenn	PM10 - Turnbull NWR	MAXIMUM
A 1/1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/1 1/12 1/20 1/21 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22 1/22	1 7.6 2 6.7 3 6.4 4 2.3 5 3.3 5 3.1 7 3.2 8 4.0 2.1 0.9 1.0 0.9 1.0 5.0 3 4.5 4 5.9 5 5.4 5 5.4 5 5.4 5 4.2 7 6.0 8 5.3 2.4 5.8 3.7 3.2 5 1.8 4 2.0 5 1.8 4 3.4 3 1.7 3.1 3.4	$\begin{array}{c} 10.1\\ 8.1\\ 7.5\\ 2.8\\ 4.4\\ 2.4\\ 3.4\\ 4.1\\ 1.3\\ 2.4\\ 2.5\\ 6.5\\ 5.6\\ 9.3\\ 9.8\\ 7.0\\ 8.3\\ 9.2\\ 5.3\\ 8.2\\ 7.9\\ 5.2\\ 5.0\\ 3.5\\ 3.9\\ 6.3\\ 4.7\\ 4.0\\ 2.5\\ 3.7\\ \end{array}$	$\begin{array}{c} 11.5\\ 9.9\\ 7.4\\ 2.6\\ 2.6\\ 1.9\\ 4.0\\ 4.8\\ \hline \\ 5.6\\ 6.6\\ 9.7\\ 9.4\\ 8.6\\ 9.5\\ 11.1\\ 5.2\\ 8.4\\ 7.4\\ 8.7\\ 8.4\\ 7.5\\ 6.9\\ 12.3\\ 6.4\\ 4.7\\ 5.6\\ \end{array}$	7.2 1.0 3.2 4.6 4.6 4.9 2.5 3.3 12.5 4.7 3.0	$\begin{array}{c} \hline \mathbf{a} \\ \mathbf{a} \\ \hline \mathbf{a} \\ \mathbf{a} \\ \hline \mathbf{a} \\ \hline \mathbf{a} \\ \mathbf{a}$	10.0 5.6 5.2 2.3 2.2 1.4 4.6 5.3 0.6 3.0 4.5 4.7 4.4 7.0 6.0 5.7 8.0 11.9 3.8 5.9	$\begin{array}{c} 11.2\\ 9.6\\ 6.7\\ 2.8\\ 2.5\\ 0.7\\ 2.8\\ 2.2\\ 0.3\\ 0.9\\ 1.5\\ 2.6\\ 4.7\\ 6.4\\ 6.6\\ 7.3\\ 6.8\\ 6.7\\ 3.1\\ 6.5\\ \end{array}$	L 4.8 3.8 4.1 1.6 2.11 0.3 0.6 0.7 0.3 0.5 1.3 2.2 2.4 2.9 4.2 2.7 1.3 1.5 0.4 0.2 0.3 1.2 3.7 1.1	L 12 19 12 19 12 4 6 3 6 12 17 12 24 28 13 11 6 10 11 14 11 10 12 19 8 12 21 31	E 111 8.8 7.9 2 3.9 4 4 4 4 4 4 4 4 4 4 4 4 4 9 9 10 12 111 9 13 9 5 7 5 7 5 4 5 7 6	1 3 4 0 2 0 0 2 0 2 0 2 0 0 2 2 0 0 0 2 2 6 5 5 5 5 10 13 9 7 3 5 2 1 0 0 0 2 0 2 0 0 2 0 2 0 0 0 2 0 0 0 0	1/1 1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/12 1/10 1/12 1/10 1/12 1/13 1/14 1/15 1/16 1/17 1/18 1/19 1/20 1/21 1/22 1/23 1/24 1/25 1/20 1/22 1/23 1/24 1/25 1/26 1/27 1/28 1/29 1/20 1/21 1/22 1/23 1/24 1/25 1/28 1/29 1/30	2 32 38 27 10 14 13 13 13 17 9 4 21 19 25 23 18 25 22 10 26 24 15 10 8 20 14 13 14 13	42 34 31 12 18 10 14 17 5 10 10 27 23 39 41 29 35 38 22 34 33 22 21 15 16 26 20 17 10 15 17	L 48 41 31 11 11 8 17 20 23 28 40 39 36 40 46 22 35 31 36 35 31 27 20 23 26 21	30 30 4 13 19 20 10 14 52 20 13 10 11 8	50 45 33 15 14 9 16 18 7 10 13 16 18 25 32 28 30 31 19 33	L 42 23 22 10 9 6 19 22 3 13 19 20 18 29 25 24 33 50 16 25 21 22 23 19 35 18 16 12 24 16	L 47 40 28 12 10 3 12 9 1 4 6 11 20 27 28 30 28 13 17 33 10 24 13 15 8 17 7 16	20 16 17 7 9 1 2 3 1 2 5 9 10 12 17 11 6 6 2 1 1 1 1 1 1 1 1 1 1 1 1 1	L 11 18 11 18 11 4 6 3 6 11 16 11 20 22 26 12 10 6 9 10 9 10 9 11 18 7 11 20 29 30	E 10 8 7 2 4 5 6 16 4 5 6 16 4 5 6 16 4 5 6 16 4 5 6 16 4 4 4 5 6 7 5 </td <td>1 3 0 2 0 1</td> <td>50 45 33 15 18 13 19 22 9 13 19 27 28 40 41 36 40 50 22 35 37 36 35 31 29 52 27</td>	1 3 0 2 0 1	50 45 33 15 18 13 19 22 9 13 19 27 28 40 41 36 40 50 22 35 37 36 35 31 29 52 27
AVC MAX		5.4 10.1	7.1 12.3	4.2 12.5	5.8 12.0	5.1 11.9	4.3 11.2	1.8 4.8	14 32	7 17	3 13	.VG IAX	16 32	23 42	29 51	17 52	24 50	21 50	18 47	8 20	13 30	7 16	3 12	30 52