The maximum Air Quality Index (AQI) value for April was 57/MODERATE (PM$_{2.5}$; 24-hour average mass concentration = 14.8 μg/m3; Figures 1 and 2, Table 1), recorded on the 21st at Spokane, Augusta & Fiske. Winds were diminished and temperatures unseasonably high under atmospheric high pressure ridges, resulting in several days in the AQI-MODERATE category in mid-April. The maximum AQI value for particulate matter (PM$_{10}$) was 42 (GOOD; 24-hour average mass concentration = 45 μg/m3; April 21st, Spokane-Augusta Ave). The maximum AQI value for carbon monoxide was 14 (GOOD; maximum 8-hour concentration = 1.3 ppm; April 20th; Spokane-3rd & Washington).

Figure 1: Air Quality Index (AQI) values for April 2016. The data represent the maximum AQI values across all monitoring stations within Spokane County.

See Appendix 1 of this report for information about federal air quality standards or Appendix 2 for a description of the AQI. Daily 24-hour average mass concentrations of PM$_{2.5}$ monitored in April throughout the network are shown in Figure 2.

The April daily air quality data for all monitoring stations in the Spokane region are provided in Appendix 3. Current and historical air quality data can be obtained electronically from Ecology’s air monitoring data website, https://fortress.wa.gov/ecy/enviwa/Default.htm.
Tables 1 and 2 contain the maximum AQI values for each pollutant for the month and for the year to date. Table 3 summarizes the year to date daily AQIs by category and compares them to last year’s AQIs.

Table 1: Maximum AQI values and pollutant concentrations for this reporting period

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>AQI/Concentration</th>
<th>Location</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>14/1.3 ppm (8 hour)</td>
<td>Spokane, 3rd & Washington</td>
<td>4/20</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>42/45 µg/m³</td>
<td>Spokane, Augusta & Fiske (Augusta Ave)</td>
<td>4/21</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>57/14.8 µg/m³</td>
<td>Spokane, Augusta & Fiske (Augusta Ave)</td>
<td>4/21</td>
</tr>
</tbody>
</table>

Table 2: Maximum AQI values and pollutant concentrations to date this year

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>AQI/Concentration</th>
<th>Location</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>22/2.0 ppm (8 hour)</td>
<td>Spokane, 3rd & Washington</td>
<td>2/9, 2/10</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>50/54 µg/m³</td>
<td>Spokane, Augusta & Fiske (Augusta Ave)</td>
<td>2/10</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>71/21.8 µg/m³</td>
<td>Spokane, Augusta & Fiske (Augusta Ave) Spokane, Monroe & Wellesley (Monroe St)</td>
<td>1/1</td>
</tr>
</tbody>
</table>
Table 3: AQI summary as of April 30, 2016

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Days This Year</th>
<th>Last Year to Date*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good (0-50)</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Moderate (51-100)</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>Unhealthy for Sensitive Groups (101-150)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unhealthy (151-200)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Very Unhealthy (201-300)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hazardous (>300)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*There are no data for April 28-30, 2015.
Appendix 1 – National Ambient Air Quality Standards

The Clean Air Act requires EPA to set National Ambient Air Quality Standards (NAAQS) for six common air pollutants, carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO₂), particulate matter (PM₁₀ and PM₂.₅), ground-level ozone (O₃) and sulfur dioxide (SO₂; Table A-1). These are known as “criteria” pollutants because the US EPA established regulatory limits to concentrations in ambient air using human health or environmentally based criteria. Carbon monoxide, particulate matter and ozone are monitored in Spokane County by the Spokane Regional Clean Air Agency (SRCAA) and the Washington State Department of Ecology (Ecology).

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Primary/ Secondary</th>
<th>Averaging Time</th>
<th>Level</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>primary</td>
<td>8 hours</td>
<td>9 ppm</td>
<td>Not to be exceeded more than once per year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 hour</td>
<td>35 ppm</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>primary and secondary</td>
<td>Rolling 3 month period</td>
<td>0.15 μg/m³</td>
<td>Not to be exceeded</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td>primary</td>
<td>1 hour</td>
<td>100 ppb</td>
<td>98th percentile of 1-hour daily maximum concentrations, averaged over 3 years</td>
</tr>
<tr>
<td></td>
<td>primary and secondary</td>
<td>1 year</td>
<td>53 ppb</td>
<td>Annual Mean</td>
</tr>
<tr>
<td>Ozone (O₃)</td>
<td>primary and secondary</td>
<td>8 hours</td>
<td>0.070 ppm</td>
<td>Annual fourth-highest daily maximum 8-hour concentration, averaged over 3 years</td>
</tr>
<tr>
<td>Particle Pollution (PM)</td>
<td>PM₂.₅</td>
<td>primary</td>
<td>1 year</td>
<td>12.0 μg/m³ annual mean, averaged over 3 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>secondary</td>
<td>1 year</td>
<td>15.0 μg/m³ annual mean, averaged over 3 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>primary and secondary</td>
<td>24 hours</td>
<td>35 μg/m³ 98th percentile, averaged over 3 years</td>
</tr>
<tr>
<td></td>
<td>PM₁₀</td>
<td>primary and secondary</td>
<td>24 hours</td>
<td>150 μg/m³ Not to be exceeded more than once per year on average over 3 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>primary</td>
<td>1 hour</td>
<td>75 ppb 99th percentile of 1-hour daily maximum concentrations, averaged over 3 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>secondary</td>
<td>3 hours</td>
<td>0.5 ppm Not to be exceeded more than once per year</td>
</tr>
</tbody>
</table>

(1) In areas designated nonattainment for the Pb standards prior to the promulgation of the current (2008) standards, and for which implementation plans to attain or maintain the current (2008) standards have not been submitted and approved, the previous standards (1.5 μg/m³ as a calendar quarter average) also remain in effect.

(2) The level of the annual NO₂ standard is 0.053 ppm. It is shown here in terms of ppb for the purposes of clearer comparison to the 1-hour standard level.

(4) The previous SO₂ standards (0.14 ppm 24-hour and 0.03 ppm annual) will additionally remain in effect in certain areas: (1) any area for which it is not yet 1 year since the effective date of designation under the current (2010) standards, and (2) any area for which implementation plans providing for attainment of the current (2010) standard have not been submitted and approved and which is designated nonattainment under the previous SO₂ standards or is not meeting the requirements of a SIP call under the previous SO₂ standards (40 CFR 50.4(3)). A SIP call is an EPA action requiring a state to resubmit all or part of its State Implementation Plan to demonstrate attainment of the require NAAQS.
The Air Quality Index (AQI) is EPA’s color-coded tool for communicating daily air quality to the public and can be calculated for any of the criteria pollutants except lead, provided monitoring data are available. An index value above 100 indicates that the concentration of a criteria pollutant exceeded the limit established in the NAAQS. Categories of the AQI are “good” (green, 0-50), “moderate” (yellow, 51-100), “unhealthy for sensitive groups” (orange, 101-150), “unhealthy” (red, 151-200), “very unhealthy” (purple, 201-300) and “hazardous” (maroon, 301-500; Table A-2). The chart below contains new ozone AQI breakpoints that will be effective starting with the 2016 ozone monitoring season.

Table A-2: Air pollutant breakpoints for the Air Quality Index.

<table>
<thead>
<tr>
<th>Air Quality Index Levels of Health Concern</th>
<th>Color Code</th>
<th>Index Numerical Value</th>
<th>Breakpoints</th>
<th>Health Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>Green</td>
<td>0-50</td>
<td>0.000-0.054</td>
<td>0.0-12.0</td>
</tr>
<tr>
<td>Moderate</td>
<td>Yellow</td>
<td>51-100</td>
<td>0.055-0.070</td>
<td>12.1-35.4</td>
</tr>
<tr>
<td>Unhealthy for Sensitive Groups</td>
<td>Orange</td>
<td>101-150</td>
<td>0.071-0.085</td>
<td>35.5-65.4</td>
</tr>
<tr>
<td>Unhealthy</td>
<td>Red</td>
<td>151-200</td>
<td>0.086-0.105</td>
<td>65.5-150.4</td>
</tr>
<tr>
<td>Very Unhealthy</td>
<td>Purple</td>
<td>201-300</td>
<td>0.106-0.200</td>
<td>150.5-250.4</td>
</tr>
<tr>
<td>Hazardous</td>
<td>Maroon</td>
<td>>300</td>
<td>0.201 to the Significant Harm Level* (0.600 ppm, 2 hour average)</td>
<td>250.5+</td>
</tr>
</tbody>
</table>

The significant harm level (SHL) is set at a level that represents imminent and substantial endangerment to public health.
Table A-3: Summary air quality data for April for air monitoring stations in Spokane County.

The carbon monoxide data are maximum 8-hour running averages in parts per million (ppm) and the PM data are 24-hour averages in micrograms per cubic meter of air ($\mu g/m^3$). The PM$_{2.5}$ monitor at Spokane Valley-E. Broadway and the PM$_{10}$ monitor at Turnbull National Wildlife Refuge will be replaced in June of this year.

<table>
<thead>
<tr>
<th>Date</th>
<th>CO 3rd & Washington (8 hour max, ppm)</th>
<th>PM$_{2.5}$ Augusta & Fiske BAM ($\mu g/m^3$)</th>
<th>PM$_{2.5}$ E. Broadway Ave. ($\mu g/m^3$)</th>
<th>PM$_{2.5}$ Airway Heights TEOM ($\mu g/m^3$)</th>
<th>PM$_{2.5}$ Monroe & Wellesley nephelometer ($\mu g/m^3$)</th>
<th>PM$_{2.5}$ Liberty Lake TEOM ($\mu g/m^3$)</th>
<th>PM$_{2.5}$ Colbert TEOM ($\mu g/m^3$)</th>
<th>PM$_{10}$ Augusta & Fiske TEOM ($\mu g/m^3$)</th>
<th>PM$_{10}$ Turnbull NWR ($\mu g/m^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/1</td>
<td>1.2</td>
<td>11.7</td>
<td>7.8</td>
<td>6.5</td>
<td>8.9</td>
<td>9.3</td>
<td>39</td>
<td>1.0</td>
<td>11.7</td>
</tr>
<tr>
<td>4/2</td>
<td>1.2</td>
<td>10.2</td>
<td>7.5</td>
<td>5.5</td>
<td>3.7</td>
<td>9.3</td>
<td>25</td>
<td>1.0</td>
<td>10.2</td>
</tr>
<tr>
<td>4/3</td>
<td>1.0</td>
<td>6.7</td>
<td>6.6</td>
<td>5.1</td>
<td>4.5</td>
<td>6.7</td>
<td>16</td>
<td>1.0</td>
<td>6.7</td>
</tr>
<tr>
<td>4/4</td>
<td>1.0</td>
<td>6.8</td>
<td>5.7</td>
<td>2.9</td>
<td>3.6</td>
<td>7.7</td>
<td>15</td>
<td>1.0</td>
<td>6.8</td>
</tr>
<tr>
<td>4/5</td>
<td>0.7</td>
<td>3.4</td>
<td>6.1</td>
<td>0.9</td>
<td>2.9</td>
<td>1.6</td>
<td>12</td>
<td>0.7</td>
<td>3.4</td>
</tr>
<tr>
<td>4/6</td>
<td>0.6</td>
<td>5.5</td>
<td>3.9</td>
<td>2.3</td>
<td>4.1</td>
<td>3.0</td>
<td>21</td>
<td>0.6</td>
<td>5.5</td>
</tr>
<tr>
<td>4/7</td>
<td>0.7</td>
<td>8.7</td>
<td>6.5</td>
<td>4.9</td>
<td>5.1</td>
<td>5.6</td>
<td>27</td>
<td>0.7</td>
<td>8.7</td>
</tr>
<tr>
<td>4/8</td>
<td>0.8</td>
<td>12.1</td>
<td>6.9</td>
<td>5.3</td>
<td>5.9</td>
<td>6.3</td>
<td>36</td>
<td>0.8</td>
<td>12.1</td>
</tr>
<tr>
<td>4/9</td>
<td>0.6</td>
<td>10.3</td>
<td>5.5</td>
<td>4.6</td>
<td>6.9</td>
<td>6.3</td>
<td>28</td>
<td>0.6</td>
<td>10.3</td>
</tr>
<tr>
<td>4/10</td>
<td>0.6</td>
<td>11.6</td>
<td>7.0</td>
<td>5.5</td>
<td>7.5</td>
<td>7.1</td>
<td>27</td>
<td>0.6</td>
<td>11.6</td>
</tr>
<tr>
<td>4/11</td>
<td>0.7</td>
<td>10.2</td>
<td>7.8</td>
<td>5.1</td>
<td>7.6</td>
<td>8.0</td>
<td>36</td>
<td>0.7</td>
<td>10.2</td>
</tr>
<tr>
<td>4/12</td>
<td>0.7</td>
<td>6.9</td>
<td>5.7</td>
<td>2.9</td>
<td>5.3</td>
<td>6.2</td>
<td>17</td>
<td>0.7</td>
<td>6.9</td>
</tr>
<tr>
<td>4/13</td>
<td>0.8</td>
<td>3.7</td>
<td>3.6</td>
<td>1.6</td>
<td>2.5</td>
<td>2.7</td>
<td>10</td>
<td>0.8</td>
<td>3.7</td>
</tr>
<tr>
<td>4/14</td>
<td>0.9</td>
<td>4.9</td>
<td>4.4</td>
<td>2.2</td>
<td>4.1</td>
<td>4.8</td>
<td>10</td>
<td>0.9</td>
<td>4.9</td>
</tr>
<tr>
<td>4/15</td>
<td>1.0</td>
<td>9.0</td>
<td>5.8</td>
<td>4.1</td>
<td>4.9</td>
<td>5.9</td>
<td>14</td>
<td>1.0</td>
<td>9.0</td>
</tr>
<tr>
<td>4/16</td>
<td>1.0</td>
<td>10.0</td>
<td>6.9</td>
<td>7.4</td>
<td>5.4</td>
<td>6.8</td>
<td>15</td>
<td>1.0</td>
<td>10.0</td>
</tr>
<tr>
<td>4/17</td>
<td>1.0</td>
<td>13.1</td>
<td>8.6</td>
<td>7.5</td>
<td>7.8</td>
<td>7.7</td>
<td>19</td>
<td>1.0</td>
<td>13.1</td>
</tr>
<tr>
<td>4/18</td>
<td>1.0</td>
<td>12.2</td>
<td>7.6</td>
<td>6.7</td>
<td>6.8</td>
<td>7.2</td>
<td>28</td>
<td>1.0</td>
<td>12.2</td>
</tr>
<tr>
<td>4/19</td>
<td>1.0</td>
<td>13.0</td>
<td>10.0</td>
<td>9.2</td>
<td>9.9</td>
<td>9.0</td>
<td>30</td>
<td>1.0</td>
<td>13.0</td>
</tr>
<tr>
<td>4/20</td>
<td>1.3</td>
<td>14.4</td>
<td>12.7</td>
<td>10.9</td>
<td>11.4</td>
<td>9.6</td>
<td>33</td>
<td>1.3</td>
<td>14.4</td>
</tr>
<tr>
<td>4/21</td>
<td>1.2</td>
<td>14.8</td>
<td>11.4</td>
<td>9.5</td>
<td>12.3</td>
<td>12.7</td>
<td>45</td>
<td>1.2</td>
<td>14.8</td>
</tr>
<tr>
<td>4/22</td>
<td>1.0</td>
<td>12.1</td>
<td>8.5</td>
<td>6.5</td>
<td>11.1</td>
<td>9.5</td>
<td>41</td>
<td>1.0</td>
<td>12.1</td>
</tr>
<tr>
<td>4/23</td>
<td>0.9</td>
<td>5.9</td>
<td>3.9</td>
<td>2.4</td>
<td>3.4</td>
<td>3.8</td>
<td>11</td>
<td>0.9</td>
<td>5.9</td>
</tr>
<tr>
<td>4/24</td>
<td>0.8</td>
<td>4.3</td>
<td>3.9</td>
<td>2.6</td>
<td>3.5</td>
<td>3.3</td>
<td>10</td>
<td>0.8</td>
<td>4.3</td>
</tr>
<tr>
<td>4/25</td>
<td>0.9</td>
<td>5.7</td>
<td>5.2</td>
<td>3.0</td>
<td>5.1</td>
<td>4.9</td>
<td>14</td>
<td>0.9</td>
<td>5.7</td>
</tr>
<tr>
<td>4/26</td>
<td>0.8</td>
<td>5.7</td>
<td>4.8</td>
<td>3.5</td>
<td>4.6</td>
<td>4.4</td>
<td>20</td>
<td>0.8</td>
<td>5.7</td>
</tr>
<tr>
<td>4/27</td>
<td>0.8</td>
<td>8.6</td>
<td>6.4</td>
<td>4.3</td>
<td>6.2</td>
<td>6.2</td>
<td>23</td>
<td>0.8</td>
<td>8.6</td>
</tr>
<tr>
<td>4/28</td>
<td>0.7</td>
<td>5.7</td>
<td>4.7</td>
<td>2.8</td>
<td>3.5</td>
<td>3.9</td>
<td>11</td>
<td>0.7</td>
<td>5.7</td>
</tr>
<tr>
<td>4/29</td>
<td>1.0</td>
<td>4.7</td>
<td>4.3</td>
<td>1.6</td>
<td>4.4</td>
<td>4.3</td>
<td>8</td>
<td>1.0</td>
<td>4.7</td>
</tr>
<tr>
<td>4/30</td>
<td>0.8</td>
<td>5.8</td>
<td>4.8</td>
<td>4.4</td>
<td>4.6</td>
<td>4.6</td>
<td>7</td>
<td>0.8</td>
<td>5.8</td>
</tr>
<tr>
<td>AVG</td>
<td>0.9</td>
<td>8.6</td>
<td>6.5</td>
<td>4.7</td>
<td>5.9</td>
<td>6.3</td>
<td>22</td>
<td>0.9</td>
<td>8.6</td>
</tr>
<tr>
<td>MAX</td>
<td>1.3</td>
<td>14.8</td>
<td>12.7</td>
<td>10.9</td>
<td>12.3</td>
<td>12.7</td>
<td>45</td>
<td>1.3</td>
<td>14.8</td>
</tr>
</tbody>
</table>